Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway.

Identifieur interne : 001A72 ( Main/Exploration ); précédent : 001A71; suivant : 001A73

Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway.

Auteurs : D. Zaragoza [Canada] ; A. Ghavidel ; J. Heitman ; M C Schultz

Source :

RBID : pubmed:9671456

Descripteurs français

English descriptors

Abstract

The macrolide antibiotic rapamycin inhibits cellular proliferation by interfering with the highly conserved TOR (for target of rapamycin) signaling pathway. Growth arrest of budding yeast cells treated with rapamycin is followed by the program of molecular events that characterizes entry into G0 (stationary phase), including the induction of polymerase (Pol) II genes typically expressed only in G0. Normally, progression into G0 is characterized by transcriptional repression of the Pol I and III genes. Here, we show that rapamycin treatment also causes the transcriptional repression of Pol I and III genes. The down-regulation of Pol III transcription is TOR dependent. While it coincides with translational repression by rapamycin, transcriptional repression is due in part to a translation-independent effect that is evident in extracts from a conditional tor2 mutant. Biochemical experiments reveal that RNA Pol III and probably transcription initiation factor TFIIIB are targets of repression by rapamycin. In view of previous evidence that TFIIIB and Pol III are inhibited when protein phosphatase 2A (PP2A) function is impaired, and that PP2A is a component of the TOR pathway, our results suggest that TOR signaling regulates Pol I and Pol III transcription in response to nutrient growth signals.

DOI: 10.1128/mcb.18.8.4463
PubMed: 9671456
PubMed Central: PMC109032


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway.</title>
<author>
<name sortKey="Zaragoza, D" sort="Zaragoza, D" uniqKey="Zaragoza D" first="D" last="Zaragoza">D. Zaragoza</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Department of Biochemistry, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghavidel, A" sort="Ghavidel, A" uniqKey="Ghavidel A" first="A" last="Ghavidel">A. Ghavidel</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
<author>
<name sortKey="Schultz, M C" sort="Schultz, M C" uniqKey="Schultz M" first="M C" last="Schultz">M C Schultz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9671456</idno>
<idno type="pmid">9671456</idno>
<idno type="pmc">PMC109032</idno>
<idno type="doi">10.1128/mcb.18.8.4463</idno>
<idno type="wicri:Area/Main/Corpus">001A69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A69</idno>
<idno type="wicri:Area/Main/Curation">001A69</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A69</idno>
<idno type="wicri:Area/Main/Exploration">001A69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway.</title>
<author>
<name sortKey="Zaragoza, D" sort="Zaragoza, D" uniqKey="Zaragoza D" first="D" last="Zaragoza">D. Zaragoza</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Department of Biochemistry, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghavidel, A" sort="Ghavidel, A" uniqKey="Ghavidel A" first="A" last="Ghavidel">A. Ghavidel</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
<author>
<name sortKey="Schultz, M C" sort="Schultz, M C" uniqKey="Schultz M" first="M C" last="Schultz">M C Schultz</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Cell Cycle Proteins (MeSH)</term>
<term>G1 Phase (MeSH)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Phosphatidylinositol 3-Kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (antagonists & inhibitors)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Polyenes (pharmacology)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>RNA Polymerase III (metabolism)</term>
<term>Resting Phase, Cell Cycle (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sirolimus (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Transcription, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antifongiques (pharmacologie)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Phase G0 (MeSH)</term>
<term>Phase G1 (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (antagonistes et inhibiteurs)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Polyènes (pharmacologie)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines du cycle cellulaire (MeSH)</term>
<term>RNA polymerase III (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Sirolimus (MeSH)</term>
<term>Température (MeSH)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>RNA Polymerase III</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Polyenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>RNA polymerase III</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Polyènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>G1 Phase</term>
<term>Protein Biosynthesis</term>
<term>Resting Phase, Cell Cycle</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Phase G0</term>
<term>Phase G1</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Sirolimus</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The macrolide antibiotic rapamycin inhibits cellular proliferation by interfering with the highly conserved TOR (for target of rapamycin) signaling pathway. Growth arrest of budding yeast cells treated with rapamycin is followed by the program of molecular events that characterizes entry into G0 (stationary phase), including the induction of polymerase (Pol) II genes typically expressed only in G0. Normally, progression into G0 is characterized by transcriptional repression of the Pol I and III genes. Here, we show that rapamycin treatment also causes the transcriptional repression of Pol I and III genes. The down-regulation of Pol III transcription is TOR dependent. While it coincides with translational repression by rapamycin, transcriptional repression is due in part to a translation-independent effect that is evident in extracts from a conditional tor2 mutant. Biochemical experiments reveal that RNA Pol III and probably transcription initiation factor TFIIIB are targets of repression by rapamycin. In view of previous evidence that TFIIIB and Pol III are inhibited when protein phosphatase 2A (PP2A) function is impaired, and that PP2A is a component of the TOR pathway, our results suggest that TOR signaling regulates Pol I and Pol III transcription in response to nutrient growth signals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9671456</PMID>
<DateCompleted>
<Year>1998</Year>
<Month>08</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>18</Volume>
<Issue>8</Issue>
<PubDate>
<Year>1998</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>4463-70</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The macrolide antibiotic rapamycin inhibits cellular proliferation by interfering with the highly conserved TOR (for target of rapamycin) signaling pathway. Growth arrest of budding yeast cells treated with rapamycin is followed by the program of molecular events that characterizes entry into G0 (stationary phase), including the induction of polymerase (Pol) II genes typically expressed only in G0. Normally, progression into G0 is characterized by transcriptional repression of the Pol I and III genes. Here, we show that rapamycin treatment also causes the transcriptional repression of Pol I and III genes. The down-regulation of Pol III transcription is TOR dependent. While it coincides with translational repression by rapamycin, transcriptional repression is due in part to a translation-independent effect that is evident in extracts from a conditional tor2 mutant. Biochemical experiments reveal that RNA Pol III and probably transcription initiation factor TFIIIB are targets of repression by rapamycin. In view of previous evidence that TFIIIB and Pol III are inhibited when protein phosphatase 2A (PP2A) function is impaired, and that PP2A is a component of the TOR pathway, our results suggest that TOR signaling regulates Pol I and Pol III transcription in response to nutrient growth signals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zaragoza</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghavidel</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schultz</LastName>
<ForeName>M C</ForeName>
<Initials>MC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011090">Polyenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012320">RNA Polymerase III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016193" MajorTopicYN="N">G1 Phase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011090" MajorTopicYN="N">Polyenes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012320" MajorTopicYN="N">RNA Polymerase III</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016192" MajorTopicYN="N">Resting Phase, Cell Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>7</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1998</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
<ArticleId IdType="pmc">PMC109032</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.18.8.4463</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1974 Jan 10;249(1):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4855626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 1999 Jan;191(1-2):143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Mar 10;258(5):3230-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6298228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1984 Dec 1;3(12):2793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6396080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Sep 11;50(6):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3621348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Dec;84(24):8763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3321052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1988 Feb;8(2):1001-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3352599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Feb 24;56(4):619-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2645056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Jun;9(6):2551-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1990 Sep 24;1054(3):267-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2207178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1004-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1992452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:428-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jul;11(7):3691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2046672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Oct 15;266(29):19704-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1655793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Dec;5(12A):2315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 May 15;69(4):697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1586948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Nov;12(11):4946-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1328868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1992 Dec;73 ( Pt 12):3133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1469352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 Feb 15;212(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8444147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):383-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8393130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7769-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7689229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Feb;10(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8203157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 1993 Nov;127-128:187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7935350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32027-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1995 Mar;9(5):313-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jun 2;270(22):13476-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7768951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Oct 27;270(43):25905-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Dec;15(12):6653-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Dec;15(12):6720-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 24;270(47):28463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Feb 1;10(3):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8595879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Mar;16(3):892-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Mar 1;314 ( Pt 2):361-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Mar;19(6):1159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8730858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Sep 6;271(36):22189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8703032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 16;272(20):12961-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9148902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9034-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9256430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Nov 1;11(21):2780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1974 Apr 15;84(3):445-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4618856</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ghavidel, A" sort="Ghavidel, A" uniqKey="Ghavidel A" first="A" last="Ghavidel">A. Ghavidel</name>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
<name sortKey="Schultz, M C" sort="Schultz, M C" uniqKey="Schultz M" first="M C" last="Schultz">M C Schultz</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Zaragoza, D" sort="Zaragoza, D" uniqKey="Zaragoza D" first="D" last="Zaragoza">D. Zaragoza</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9671456
   |texte=   Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9671456" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020